If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.7x^2+6x+2.7=0
a = 0.7; b = 6; c = +2.7;
Δ = b2-4ac
Δ = 62-4·0.7·2.7
Δ = 28.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-\sqrt{28.44}}{2*0.7}=\frac{-6-\sqrt{28.44}}{1.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+\sqrt{28.44}}{2*0.7}=\frac{-6+\sqrt{28.44}}{1.4} $
| 0.7x+6x+2.7=0 | | 20b^2+37b+3=-12 | | Y=4x-28Y=1.5x-18 | | y2-111y+108=0 | | 7/(4-2i)=0 | | 7h+72=6h+96 | | 4x^2+0.26x-1.248=0 | | 7/4-2i=0 | | 5p+5=45 | | x+4-2x-7=180 | | 3x^2+5x+54=0 | | 5x-1/2=17 | | -4y^2-88=0 | | 5(2+2x)=20 | | 4y^2-22y-84=0 | | 12=-3(7-d) | | x+4+2x+4=180 | | 6=x/4+19 | | 4(t-5)=64 | | (5+u)(5u-4)=0 | | 4(t-25)=64 | | -20+8x=180 | | 0=9+x/7 | | 5(2x+9)=-33x+2 | | 11a+18-3a=9a+6+a | | m+5=72;m+72=5 | | 5(2x+9)=-33+2 | | -331/3=400-y | | -1/7y+1/4=-5/7y+1/2 | | 7(1+5x)=77 | | m/5-6=3 | | 2u-66=-8 |